Scroll to navigation

sgeqr2p.f(3) LAPACK sgeqr2p.f(3)

NAME

sgeqr2p.f

SYNOPSIS

Functions/Subroutines


subroutine sgeqr2p (M, N, A, LDA, TAU, WORK, INFO)
SGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.

Function/Subroutine Documentation

subroutine sgeqr2p (integer M, integer N, real, dimension( lda, * ) A, integer LDA, real, dimension( * ) TAU, real, dimension( * ) WORK, integer INFO)

SGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.

Purpose:


SGEQR2P computes a QR factorization of a real m by n matrix A:
A = Q * R. The diagonal entries of R are nonnegative.

Parameters:

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrix A. N >= 0.

A


A is REAL array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, the elements on and above the diagonal of the array
contain the min(m,n) by n upper trapezoidal matrix R (R is
upper triangular if m >= n). The diagonal entries of R
are nonnegative; the elements below the diagonal,
with the array TAU, represent the orthogonal matrix Q as a
product of elementary reflectors (see Further Details).

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU


TAU is REAL array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).

WORK


WORK is REAL array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Further Details:


The matrix Q is represented as a product of elementary reflectors
Q = H(1) H(2) . . . H(k), where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**T
where tau is a real scalar, and v is a real vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).
See Lapack Working Note 203 for details

Definition at line 126 of file sgeqr2p.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0