Scroll to navigation

zgerq2.f(3) LAPACK zgerq2.f(3)

NAME

zgerq2.f

SYNOPSIS

Functions/Subroutines


subroutine zgerq2 (M, N, A, LDA, TAU, WORK, INFO)
ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.

Function/Subroutine Documentation

subroutine zgerq2 (integer M, integer N, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( * ) TAU, complex*16, dimension( * ) WORK, integer INFO)

ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.

Purpose:


ZGERQ2 computes an RQ factorization of a complex m by n matrix A:
A = R * Q.

Parameters:

M


M is INTEGER
The number of rows of the matrix A. M >= 0.

N


N is INTEGER
The number of columns of the matrix A. N >= 0.

A


A is COMPLEX*16 array, dimension (LDA,N)
On entry, the m by n matrix A.
On exit, if m <= n, the upper triangle of the subarray
A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
if m >= n, the elements on and above the (m-n)-th subdiagonal
contain the m by n upper trapezoidal matrix R; the remaining
elements, with the array TAU, represent the unitary matrix
Q as a product of elementary reflectors (see Further
Details).

LDA


LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).

TAU


TAU is COMPLEX*16 array, dimension (min(M,N))
The scalar factors of the elementary reflectors (see Further
Details).

WORK


WORK is COMPLEX*16 array, dimension (M)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Further Details:


The matrix Q is represented as a product of elementary reflectors
Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
Each H(i) has the form
H(i) = I - tau * v * v**H
where tau is a complex scalar, and v is a complex vector with
v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).

Definition at line 125 of file zgerq2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0