Scroll to navigation

zhpgv.f(3) LAPACK zhpgv.f(3)

NAME

zhpgv.f

SYNOPSIS

Functions/Subroutines


subroutine zhpgv (ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK, RWORK, INFO)
ZHPGV

Function/Subroutine Documentation

subroutine zhpgv (integer ITYPE, character JOBZ, character UPLO, integer N, complex*16, dimension( * ) AP, complex*16, dimension( * ) BP, double precision, dimension( * ) W, complex*16, dimension( ldz, * ) Z, integer LDZ, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer INFO)

ZHPGV

Purpose:


ZHPGV computes all the eigenvalues and, optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
Here A and B are assumed to be Hermitian, stored in packed format,
and B is also positive definite.

Parameters:

ITYPE


ITYPE is INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x

JOBZ


JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.

UPLO


UPLO is CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.

N


N is INTEGER
The order of the matrices A and B. N >= 0.

AP


AP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.

BP


BP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**H*U or B = L*L**H, in the same storage
format as B.

W


W is DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.

Z


Z is COMPLEX*16 array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**H*B*Z = I;
if ITYPE = 3, Z**H*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.

LDZ


LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).

WORK


WORK is COMPLEX*16 array, dimension (max(1, 2*N-1))

RWORK


RWORK is DOUBLE PRECISION array, dimension (max(1, 3*N-2))

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: ZPPTRF or ZHPEV returned an error code:
<= N: if INFO = i, ZHPEV failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not convergeto zero;
> N: if INFO = N + i, for 1 <= i <= n, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Definition at line 167 of file zhpgv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0