table of contents
zhpgvd.f(3) | LAPACK | zhpgvd.f(3) |
NAME¶
zhpgvd.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine zhpgvd (ITYPE, JOBZ, UPLO, N, AP, BP, W,
Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO)
ZHPGVD
Function/Subroutine Documentation¶
subroutine zhpgvd (integer ITYPE, character JOBZ, character UPLO, integer N, complex*16, dimension( * ) AP, complex*16, dimension( * ) BP, double precision, dimension( * ) W, complex*16, dimension( ldz, * ) Z, integer LDZ, complex*16, dimension( * ) WORK, integer LWORK, double precision, dimension( * ) RWORK, integer LRWORK, integer, dimension( * ) IWORK, integer LIWORK, integer INFO)¶
ZHPGVD
Purpose:
ZHPGVD computes all the eigenvalues and, optionally, the eigenvectors
of a complex generalized Hermitian-definite eigenproblem, of the form
A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
B are assumed to be Hermitian, stored in packed format, and B is also
positive definite.
If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
Parameters:
ITYPE
ITYPE is INTEGER
Specifies the problem type to be solved:
= 1: A*x = (lambda)*B*x
= 2: A*B*x = (lambda)*x
= 3: B*A*x = (lambda)*x
JOBZ
JOBZ is CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO
UPLO is CHARACTER*1
= 'U': Upper triangles of A and B are stored;
= 'L': Lower triangles of A and B are stored.
N
N is INTEGER
The order of the matrices A and B. N >= 0.
AP
AP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
BP
BP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**H*U or B = L*L**H, in the same storage
format as B.
W
W is DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
Z
Z is COMPLEX*16 array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**H*B*Z = I;
if ITYPE = 3, Z**H*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
WORK
WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the required LWORK.
LWORK
LWORK is INTEGER
The dimension of the array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= N.
If JOBZ = 'V' and N > 1, LWORK >= 2*N.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the required sizes of the WORK, RWORK and
IWORK arrays, returns these values as the first entries of
the WORK, RWORK and IWORK arrays, and no error message
related to LWORK or LRWORK or LIWORK is issued by XERBLA.
RWORK
RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
LRWORK
LRWORK is INTEGER
The dimension of array RWORK.
If N <= 1, LRWORK >= 1.
If JOBZ = 'N' and N > 1, LRWORK >= N.
If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
If LRWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK, RWORK
and IWORK arrays, returns these values as the first entries
of the WORK, RWORK and IWORK arrays, and no error message
related to LWORK or LRWORK or LIWORK is issued by XERBLA.
IWORK
IWORK is INTEGER array, dimension (MAX(1,LIWORK))
On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
LIWORK
LIWORK is INTEGER
The dimension of array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the required sizes of the WORK, RWORK
and IWORK arrays, returns these values as the first entries
of the WORK, RWORK and IWORK arrays, and no error message
related to LWORK or LRWORK or LIWORK is issued by XERBLA.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: ZPPTRF or ZHPEVD returned an error code:
<= N: if INFO = i, ZHPEVD failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not convergeto zero;
> N: if INFO = N + i, for 1 <= i <= n, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
December 2016
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky,
USA
Definition at line 233 of file zhpgvd.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |