Scroll to navigation

zhptri.f(3) LAPACK zhptri.f(3)

NAME

zhptri.f

SYNOPSIS

Functions/Subroutines


subroutine zhptri (UPLO, N, AP, IPIV, WORK, INFO)
ZHPTRI

Function/Subroutine Documentation

subroutine zhptri (character UPLO, integer N, complex*16, dimension( * ) AP, integer, dimension( * ) IPIV, complex*16, dimension( * ) WORK, integer INFO)

ZHPTRI

Purpose:


ZHPTRI computes the inverse of a complex Hermitian indefinite matrix
A in packed storage using the factorization A = U*D*U**H or
A = L*D*L**H computed by ZHPTRF.

Parameters:

UPLO


UPLO is CHARACTER*1
Specifies whether the details of the factorization are stored
as an upper or lower triangular matrix.
= 'U': Upper triangular, form is A = U*D*U**H;
= 'L': Lower triangular, form is A = L*D*L**H.

N


N is INTEGER
The order of the matrix A. N >= 0.

AP


AP is COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the block diagonal matrix D and the multipliers
used to obtain the factor U or L as computed by ZHPTRF,
stored as a packed triangular matrix.
On exit, if INFO = 0, the (Hermitian) inverse of the original
matrix, stored as a packed triangular matrix. The j-th column
of inv(A) is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
if UPLO = 'L',
AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.

IPIV


IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by ZHPTRF.

WORK


WORK is COMPLEX*16 array, dimension (N)

INFO


INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
inverse could not be computed.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Definition at line 111 of file zhptri.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0