Scroll to navigation

zlagtm.f(3) LAPACK zlagtm.f(3)

NAME

zlagtm.f

SYNOPSIS

Functions/Subroutines


subroutine zlagtm (TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B, LDB)
ZLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.

Function/Subroutine Documentation

subroutine zlagtm (character TRANS, integer N, integer NRHS, double precision ALPHA, complex*16, dimension( * ) DL, complex*16, dimension( * ) D, complex*16, dimension( * ) DU, complex*16, dimension( ldx, * ) X, integer LDX, double precision BETA, complex*16, dimension( ldb, * ) B, integer LDB)

ZLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix, B and C are rectangular matrices, and α and β are scalars, which may be 0, 1, or -1.

Purpose:


ZLAGTM performs a matrix-vector product of the form
B := alpha * A * X + beta * B
where A is a tridiagonal matrix of order N, B and X are N by NRHS
matrices, and alpha and beta are real scalars, each of which may be
0., 1., or -1.

Parameters:

TRANS


TRANS is CHARACTER*1
Specifies the operation applied to A.
= 'N': No transpose, B := alpha * A * X + beta * B
= 'T': Transpose, B := alpha * A**T * X + beta * B
= 'C': Conjugate transpose, B := alpha * A**H * X + beta * B

N


N is INTEGER
The order of the matrix A. N >= 0.

NRHS


NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices X and B.

ALPHA


ALPHA is DOUBLE PRECISION
The scalar alpha. ALPHA must be 0., 1., or -1.; otherwise,
it is assumed to be 0.

DL


DL is COMPLEX*16 array, dimension (N-1)
The (n-1) sub-diagonal elements of T.

D


D is COMPLEX*16 array, dimension (N)
The diagonal elements of T.

DU


DU is COMPLEX*16 array, dimension (N-1)
The (n-1) super-diagonal elements of T.

X


X is COMPLEX*16 array, dimension (LDX,NRHS)
The N by NRHS matrix X.

LDX


LDX is INTEGER
The leading dimension of the array X. LDX >= max(N,1).

BETA


BETA is DOUBLE PRECISION
The scalar beta. BETA must be 0., 1., or -1.; otherwise,
it is assumed to be 1.

B


B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the N by NRHS matrix B.
On exit, B is overwritten by the matrix expression
B := alpha * A * X + beta * B.

LDB


LDB is INTEGER
The leading dimension of the array B. LDB >= max(N,1).

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Definition at line 147 of file zlagtm.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0