Scroll to navigation

zlaqr3.f(3) LAPACK zlaqr3.f(3)

NAME

zlaqr3.f

SYNOPSIS

Functions/Subroutines


subroutine zlaqr3 (WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT, NV, WV, LDWV, WORK, LWORK)
ZLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).

Function/Subroutine Documentation

subroutine zlaqr3 (logical WANTT, logical WANTZ, integer N, integer KTOP, integer KBOT, integer NW, complex*16, dimension( ldh, * ) H, integer LDH, integer ILOZ, integer IHIZ, complex*16, dimension( ldz, * ) Z, integer LDZ, integer NS, integer ND, complex*16, dimension( * ) SH, complex*16, dimension( ldv, * ) V, integer LDV, integer NH, complex*16, dimension( ldt, * ) T, integer LDT, integer NV, complex*16, dimension( ldwv, * ) WV, integer LDWV, complex*16, dimension( * ) WORK, integer LWORK)

ZLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).

Purpose:


Aggressive early deflation:
ZLAQR3 accepts as input an upper Hessenberg matrix
H and performs an unitary similarity transformation
designed to detect and deflate fully converged eigenvalues from
a trailing principal submatrix. On output H has been over-
written by a new Hessenberg matrix that is a perturbation of
an unitary similarity transformation of H. It is to be
hoped that the final version of H has many zero subdiagonal
entries.

Parameters:

WANTT


WANTT is LOGICAL
If .TRUE., then the Hessenberg matrix H is fully updated
so that the triangular Schur factor may be
computed (in cooperation with the calling subroutine).
If .FALSE., then only enough of H is updated to preserve
the eigenvalues.

WANTZ


WANTZ is LOGICAL
If .TRUE., then the unitary matrix Z is updated so
so that the unitary Schur factor may be computed
(in cooperation with the calling subroutine).
If .FALSE., then Z is not referenced.

N


N is INTEGER
The order of the matrix H and (if WANTZ is .TRUE.) the
order of the unitary matrix Z.

KTOP


KTOP is INTEGER
It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
KBOT and KTOP together determine an isolated block
along the diagonal of the Hessenberg matrix.

KBOT


KBOT is INTEGER
It is assumed without a check that either
KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
determine an isolated block along the diagonal of the
Hessenberg matrix.

NW


NW is INTEGER
Deflation window size. 1 .LE. NW .LE. (KBOT-KTOP+1).

H


H is COMPLEX*16 array, dimension (LDH,N)
On input the initial N-by-N section of H stores the
Hessenberg matrix undergoing aggressive early deflation.
On output H has been transformed by a unitary
similarity transformation, perturbed, and the returned
to Hessenberg form that (it is to be hoped) has some
zero subdiagonal entries.

LDH


LDH is INTEGER
Leading dimension of H just as declared in the calling
subroutine. N .LE. LDH

ILOZ


ILOZ is INTEGER

IHIZ


IHIZ is INTEGER
Specify the rows of Z to which transformations must be
applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N.

Z


Z is COMPLEX*16 array, dimension (LDZ,N)
IF WANTZ is .TRUE., then on output, the unitary
similarity transformation mentioned above has been
accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
If WANTZ is .FALSE., then Z is unreferenced.

LDZ


LDZ is INTEGER
The leading dimension of Z just as declared in the
calling subroutine. 1 .LE. LDZ.

NS


NS is INTEGER
The number of unconverged (ie approximate) eigenvalues
returned in SR and SI that may be used as shifts by the
calling subroutine.

ND


ND is INTEGER
The number of converged eigenvalues uncovered by this
subroutine.

SH


SH is COMPLEX*16 array, dimension (KBOT)
On output, approximate eigenvalues that may
be used for shifts are stored in SH(KBOT-ND-NS+1)
through SR(KBOT-ND). Converged eigenvalues are
stored in SH(KBOT-ND+1) through SH(KBOT).

V


V is COMPLEX*16 array, dimension (LDV,NW)
An NW-by-NW work array.

LDV


LDV is INTEGER
The leading dimension of V just as declared in the
calling subroutine. NW .LE. LDV

NH


NH is INTEGER
The number of columns of T. NH.GE.NW.

T


T is COMPLEX*16 array, dimension (LDT,NW)

LDT


LDT is INTEGER
The leading dimension of T just as declared in the
calling subroutine. NW .LE. LDT

NV


NV is INTEGER
The number of rows of work array WV available for
workspace. NV.GE.NW.

WV


WV is COMPLEX*16 array, dimension (LDWV,NW)

LDWV


LDWV is INTEGER
The leading dimension of W just as declared in the
calling subroutine. NW .LE. LDV

WORK


WORK is COMPLEX*16 array, dimension (LWORK)
On exit, WORK(1) is set to an estimate of the optimal value
of LWORK for the given values of N, NW, KTOP and KBOT.

LWORK


LWORK is INTEGER
The dimension of the work array WORK. LWORK = 2*NW
suffices, but greater efficiency may result from larger
values of LWORK.
If LWORK = -1, then a workspace query is assumed; ZLAQR3
only estimates the optimal workspace size for the given
values of N, NW, KTOP and KBOT. The estimate is returned
in WORK(1). No error message related to LWORK is issued
by XERBLA. Neither H nor Z are accessed.

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

June 2016

Contributors:

Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA

Definition at line 269 of file zlaqr3.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Tue Nov 14 2017 Version 3.8.0