table of contents
ztgex2.f(3) | LAPACK | ztgex2.f(3) |
NAME¶
ztgex2.f
SYNOPSIS¶
Functions/Subroutines¶
subroutine ztgex2 (WANTQ, WANTZ, N, A, LDA,
B, LDB, Q, LDQ, Z, LDZ, J1, INFO)
ZTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular
matrix pair by an unitary equivalence transformation.
Function/Subroutine Documentation¶
subroutine ztgex2 (logical WANTQ, logical WANTZ, integer N, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( ldb, * ) B, integer LDB, complex*16, dimension( ldq, * ) Q, integer LDQ, complex*16, dimension( ldz, * ) Z, integer LDZ, integer J1, integer INFO)¶
ZTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary equivalence transformation.
Purpose:
ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22)
in an upper triangular matrix pair (A, B) by an unitary equivalence
transformation.
(A, B) must be in generalized Schur canonical form, that is, A and
B are both upper triangular.
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H
Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H
Parameters:
WANTQ
WANTQ is LOGICAL
.TRUE. : update the left transformation matrix Q;
.FALSE.: do not update Q.
WANTZ
WANTZ is LOGICAL
.TRUE. : update the right transformation matrix Z;
.FALSE.: do not update Z.
N
N is INTEGER
The order of the matrices A and B. N >= 0.
A
A is COMPLEX*16 array, dimensions (LDA,N)
On entry, the matrix A in the pair (A, B).
On exit, the updated matrix A.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B
B is COMPLEX*16 array, dimensions (LDB,N)
On entry, the matrix B in the pair (A, B).
On exit, the updated matrix B.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
Q
Q is COMPLEX*16 array, dimension (LDQ,N)
If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit,
the updated matrix Q.
Not referenced if WANTQ = .FALSE..
LDQ
LDQ is INTEGER
The leading dimension of the array Q. LDQ >= 1;
If WANTQ = .TRUE., LDQ >= N.
Z
Z is COMPLEX*16 array, dimension (LDZ,N)
If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit,
the updated matrix Z.
Not referenced if WANTZ = .FALSE..
LDZ
LDZ is INTEGER
The leading dimension of the array Z. LDZ >= 1;
If WANTZ = .TRUE., LDZ >= N.
J1
J1 is INTEGER
The index to the first block (A11, B11).
INFO
INFO is INTEGER
=0: Successful exit.
=1: The transformed matrix pair (A, B) would be too far
from generalized Schur form; the problem is ill-
conditioned.
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
June 2017
Further Details:
In the current code both weak and strong stability tests
are performed. The user can omit the strong stability test by changing the
internal logical parameter WANDS to .FALSE.. See ref. [2] for details.
Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing
Science, Umea University, S-901 87 Umea, Sweden.
References:
[1] B. Kagstrom; A Direct Method for Reordering
Eigenvalues in the Generalized Real Schur Form of a Regular Matrix Pair (A,
B), in M.S. Moonen et al (eds), Linear Algebra for Large Scale and Real-Time
Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF-94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified Eigenvalues of a Regular Matrix Pair (A, B) and Condition Estimation: Theory, Algorithms and Software, Report UMINF-94.04, Department of Computing Science, Umea University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87. To appear in Numerical Algorithms, 1996.
Definition at line 192 of file ztgex2.f.
Author¶
Generated automatically by Doxygen for LAPACK from the source code.
Tue Nov 14 2017 | Version 3.8.0 |